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Abstract. Semantic technologies enable sophisticated search scenarios
on educational video content. Linking Open Data (LOD) provides a
vast amount of well structured semantic information in heterogenous do-
mains. But, despite of the syntactically well expressed RDF facts, when
authoring and publishing LOD, many inconsistencies may occur, espe-
cially if the data is generated with the help of automated methods. Data
cleansing approaches enable to detect inconsistencies and to overhaul
affected data sets, but they are difficult to apply automatically. Also
manual reviewing is hardly possible because of the tremendous size of
already existing LOD resources. To overcome this, we propose a collab-
orative reviewing approach, which motivates the reviewer in a playful
manner. This paper presents WhoKnows? , an online quiz that gener-
ates different kinds of questionnaires from DBpedia data sets. Besides its
playfulness, WhoKnows? has been developed for the evaluation of prop-
erty relevance ranking heuristics on DBpedia data with the convenient
side effect of detecting inconsistencies and doubtful facts.
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1 Introduction

Lecture video portals like Yovisto1 offer students the possibility to catch up on
missed lectures or enhance their knowledge by watching lectures from other uni-
versities or scientific conference presentations. In order to become a fully-fledged
and efficient eLearning tool sophisticated search methods for the video archive
are essential. Semantic search and in particular exploratory search on educa-
tional videos enables students to find related videos regarding the content [1].
By this means the study of a research field could be complemented with related
video material that can be found with the help of semantic annotations. E. g.,
a video about the physicist Alfred Kleiner might also be relevant for students,
who are interested in Albert Einstein’s relativity theory, because the research
fields of both physicists are similar. Related entities can be determined by shared

1 http://www.yovisto.com
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categories and linking properties, e. g. Alfred Kleiner and Albert Einstein are re-
lated to each other because they both were Swiss physicists and Albert Einstein
was a doctoral student of Alfred Kleiner. These semantic facts can be gained
from DBpedia2 - a semantic extraction of the online encyclopedia Wikipedia3.
Currently, DBpedia consists of 286 million facts for about 3.5 million entities
extracted from the English Wikipedia version. This results in a huge amount of
facts for every entity. For a given entity some of these facts are more relevant
than others. Besides scientific facts for Albert Einstein like academic advisors
or alma maters, DBpedia also contains the birth place and residence, ethnicity
or children. These facts (respectively the properties in question) have to be or-
dered according to their importance to find most relevant related and therefore
interesting entities.

In general, properties of a given resource are all equally important, i. e. there
is no given ranking that defines the relevance of a certain fact. Anyway, it would
be important to separate significant facts from circumstantial facts. We have
already addressed this problem in previous work by developing property ranking
heuristics that enable an exploratory search experience.

One of the major problems that we had experienced was the lack of a sound
evaluation for these property ranking heuristics. There is no objective truth for
the importance of a fact. Context, pragmatics, as well as personal point of view
determine what a single user considers to be of importance. Thus, a qualitative
evaluation has to be implemented. Of course, the obvious solution is to determine
a number of test users and to present them a set of preselected resources and
all of their properties with the task to rank the properties according to their
importance. Unfortunately, this is a rather tedious task and usually the test user
gets bored after a few selections. However, for a proper evaluation we require a
sufficient large number of users to perform this relevance ranking for a number
of resources as large as possible.

For this reason, we decided to develop our little quiz game WhoKnows? to
accomplish this task. Facts are transformed into questionaires and the user can
score points according to her performance in the quiz as explained in Section 3. In
the scope of semantic web technologies and linked data several other approaches
of “games with a purpose” try to tackle similar problems as shown in Section 2.
In order to use the viral effects of games in social networks, we integrated the
game as Facebook application4. But, WhoKnows? can also be played as stand-
alone game5.

While playing the quiz and communicating with the players about their com-
plaints, we have realized soon that our quiz had a very remarkable side effect.
People have been complaining about inconsistent, ambiguous, confusing, or con-
flicting questions among the quiz. By further investigation, we have been able
to determine a few mistakes caused by our implementation. But, the majority

2 http://dbpedia.org/
3 http://www.wikipedia.org
4 http://apps.facebook.com/whoknows_/
5 http://www.yovisto.com/whoknows
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of problematic cases originated from flaws and inconsistencies of the underlying
Linking Open Data (LOD) resources6 themselves as will be demonstrated in
Section 4. A brief outline of possible solutions how to cleanup the detected flaws
concludes the paper. Consequently, our little quiz game has proven useful in two
ways: First, to evaluate semantic property heuristics, and second, to detect flaws
and inconsistencies in LOD resources.

2 Related Work

Linked Data [2] has moved over to the focus of various web applications [3] to
enrich data and enable a semantic view on the web, as e. g., the prominent BBC
music platform7. But, despite the non-disputed advantages of this huge amount
of data available, the inconsistencies resulting from automatic data generation
and the lack of a valid evaluation can not be solved manually in an efficient
way. An obvious approach would be to draw the wisdom of the crowds [4] on
this problem and thereby use the human intelligence to overcome a computer-
generated inconvenience. This approach assumes that an objective evaluation of
the relevance of an object is best performed by gathering the opinion of many
independently interviewed people, which are provided with the same information
and facts. The most challenging problem to achieve this evaluation is to draw
people’s attention on this research issue and to motivate them to contribute
their knowledge. Obviously the development of games with a purpose [5] seems
essential for solving this problem. As pioneer games for this approach the ESP
Game [6], and Phetch [7] for annotating images, Peekaboom [8] for localizing
objects in images, and Verbosity [9] for gathering common sense facts have to
be referenced.

Following this idea and putting it in the context of the Semantic Web the
OntoGame platform provides a generic game infrastructure to develop various
types of multi-user games with only minimal modifications. A team consisting
of two players has to reach a consensus in order to earn credits for the task. The
users’ input and results are stored as RDF data for a later analysis and reuse
[10].

Also designed as multi-player game, the Listen Game aims at measuring
the semantic relationship between music songs and words. To describe a given
song, the game provides a “normal mode”, where the user has to pick the best
and worst characterizing word from a predefined 174-word vocabulary, and a
“freestyle mode”, where the user is asked to contribute a new descriptive term.
In both cases the user receives immediate feedback on what all other users have
chosen. The score is then calculated from the amount of agreement between the
user’s and all other players’ choices [11].

All referred games are following a multi-player approach. This requires two
players to be online and willing to play against or with each other at the same
time. WhoKnows? avoids this potential difficulty by enabling users to play the

6 http://linkeddata.org
7 http://www.bbc.co.uk/music
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Subject Property Object

Chile language Spanish language
Iraq language Arabic language
Brazil language Portuguese language
Italy language Italian language

Fig. 1. Screenshot and triples used to generate a One-To-One question.

game on their own whenever they want to. Thereby, we assume to increase the
motivation of a user and thus, to obtain a larger amount of user-generated data.

WhoKnows? is designed as game for in-between times integrated in a social
network. Members of such networks differ in many characteristical attributes like
age, gender, origin, social background, which is a highly appreciated precondition
for a huge diversity of opinion. Also, since each player is interested in achiev-
ing high scores, players don’t share correct answers, and thus, knowledge about
facts in the game will not be distributed. This ensures an independence of opin-
ions. By facing the challenges of consistently new and more difficult questions
the users are motivated to develop special local knowledge - a decentralization
of knowledge evolves. At the end all resulting data is stored in a database for
further analysis and turned into a collective decision. All these criteria are re-
quirements to ensure an optimal output using the wisdom of the crowds [4]. This
makes WhoKnows? a significant approach to evaluate property relevance rank-
ing heuristics, and as a side effect to detect inconsistencies and doubtful facts in
LOD resources.

3 WhoKnows? - Concept and Realization

This section deals with the concept and implementation of the WhoKnows? quiz
game. First, the game concept and graphical realization followed by the system’s
architecture are presented. Afterwards, preprocessing of the data as well as the
generation of the questionnaires are described in detail. Finally, the evaluation of
game rounds and how inconsistencies in DBpedia can be revealed are discussed.

3.1 Game Concept and Graphical Interface

The game is based on the principle to present questions to the user that have
been generated out of facts stemming from DBpedia RDF triples. As an example,
Fig. 1 shows the question ‘Spanish language is the language of ...?’ with correct
answer ‘Chile’. The question originates from the triple

dbp:Chile dbpprop:language dbp:Spanish language .
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and is composed by turning the order upside down:

Object is the property of: subject1, subject2, subject3...

Fig. 1 also shows the triples for the remaining choices. In addition, false an-
swers ‘Iraq’, ‘Brazil’, and ‘Italy’ are randomly selected from other triples meeting
the requirement that the triples’ subjects belong to the same or a similar cate-
gory. It is important to ensure that the selected false answers are really wrong
(c. f. Sect. 3.3).

To add variety and to increase the user’s motivation, the game is designed
with different game variants:

– One-To-One: only one answer is correct,
– One-To-N: one or more answers are correct,
– the Hangman game asks to fill the correct answer in a cloze.

While playing the game, the variants are used alternately. Different back-
ground and game specific button-shapes enable a preattentive recognition of
the particular game type. After selecting the answer, the user immediately re-
ceives feedback about the correctness of her choice by using an appropriate color
scheme (green for correct, red for wrong) and showing happy resp. unhappy
emotions of the game mascots. If the user has the opinion a question is somehow
odd or strange a ‘Dislike’-button enables to mark this question as an potentially
inconsistent, ambiguous, confusing, or conflicting question.

3.2 Preprocessing of DBpedia Data

As of January 2011, the DBpedia data set describes 3.5 million ‘entites’ with
over half a billion ‘facts’8. But, not all information is useful in the context of
the WhoKnows? game. The relevant data sets for the game are chosen from the
English language version of DBpedia and include:

– Ontology Infobox Properties, contains properties of the entities.
– Titles, contains labels of resources.
– Article Categories, contains resources and their direct categories.
– Categories (SKOS 9), contains categories and category hierarchies.
– Pagelinks, contains referencing links between the underlyingWikipedia-articles.

The game was primarily designed with the purpose of evaluating property
rankings for DBpedia resources in the context of exploratory video search with
Yovisto10 as described in [1]. Therefore, the huge set of available entities has
been restricted only to those, which are relevant for the underlying video search
engine Yovisto. Based on this data set, further processing filters irrelevant in-
formation and deduces implicit knowledge to speed up the question generation.
Because of the enormous amount of data, the processing has been parallelized

8 http://wiki.dbpedia.org/Datasets
9 http://www.w3.org/2004/02/skos/

10 http://www.yovisto.com/
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on a hadoop11 cluster to achieve results in a reasonable time frame. This pre-
processing comprises the following steps:

Filtering of irrelevant triples The Ontology Infobox Properties contains the
essential triples for question generation. Some triples contain very long literals,
which would result in an improper presentation. If the triples are too specific (as
e. g., the resolution of a movie or the exact number of population of a city), they
can cause a misleading comprehension of questions. Furthermore, only those
triples are to be processed, whose object and subject are part of the list of
preselected Yovisto entities. Other facts are not relevant for our purpose, because
the Yovisto search engine does not provide results related to them. In this way the
number of triples can be reduced from originally 11.1 million to only 2.1 million.

Distinct sets of resources The output of the previous step in combination
with the Article Categories data set enables to restrict processing to a distinct
set of entities, properties, and categories, only comprising the relevant resources.
This eases the database import and speeds up further processing. The process
results in 0.7 million entities, 516 different properties, and 240,000 categories.

Assignment of entities to superordinate categories To assign categories
to the entities that are necessary to generate wrong answers, the data sets and
Categories (SKOS) are combined. The categorization is based on SKOS, be-
cause the DBpedia categorization schema is incomplete and to some extend
even wrong. In Article Categories the entities are directly assigned to categories,
which sometimes are too specific. The problem is that almost all entities of
this specific category can be considered as a correct answer, and hence, no false
answer can be chosen. For example, all persons from the category ‘English Enter-
tainers’ speak English language. Therefore, no person can be selected, who does
not speak English. A more general superordinate category ‘European Actors’
comprises also non-English speaking persons and therefore is a better choice
to select false answers. Another problem lies in the fact that we have to find
the appropriate superordinate category. For this purpose the transitive closure
of categories has to be computed. Thereby, entities can be directly assigned to
their corresponding superordinate categories. To speed up the process too gen-
eral categories, such as Person, Place, Organization, or Plant, and too specific
categories, such as Space Shuttle, or Inline Hockey League, are excluded. Only
those categories are taken into account that comprise at least 500 but not more
than 15,000 entities. This filter process reduces the number of relevant categories
from originally 240,000 to only 1,200.

Weighting of Entities To ensure that the degree of difficulty raises with pro-
gressing game level, entities are weighted according to a degree of difficulty. To

11 http://hadoop.apache.org/
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obtain the weight of an entity we estimate its degree of popularity. We assume
that the more popular an entity is, the easier a question can be answered. As
a basis for this approach, we use the Wikipedia link graph derived from the
Pagelinks data set. To calculate the popularity, we utilize the Google PageRank
algorithm [12]: The more links exist, the more popular is the linked entity. In
contrast to the original PageRank algorithm, we do not take the weight of the
linking resource into account.

Restricting the candidates for questions only to those facts that achieve a cer-
tain level of link popularity is contradicting our original goal of evaluating prop-
erty heuristics. But, while playing the game, we realized that it was important
to narrow the choice for questions, because otherwise the user was confronted
with a huge number of barely solvable questions.

3.3 Generating the Questionnaire

For reasons of efficiency, the generation of questions is performed only once of-
fline. The actual selection of questions is executed online on request. The process
of query generation comprises three steps:

– weighting of triples and properties,
– assigning the degree of difficulty to triples, and
– generating false answers.

The weight of a triple t is computed from the weights of its subjects t.s and
objects t.o to

weight(t) =
44 · weight(t.s) + 1 · weight(t.o)

45
. (1)

For generating a question, the original RDF triple representing a fact is
turned upside-down, i. e. the question asks for a subject to complement the given
property and object. Because the subject is chosen by the player, its impact
on weight(t) has been raised with the empirically determined factor 44. For
weighting the properties we assume that the more popular the subjects and
objects of a RDF triple are, the more important is the property itself. The
weight of a property p is computed to

weight(p) =
winsor5(weight(si)) + winsor5(weight(oj))

2
, (2)

with si the subjects appearing with p, oj the objects appearing with p, and
winsor5() the winsorized mean to exclude outlier.

Assigning the degree of difficulty to a triple differs for distinct game types.
For example, for the One-To-One games the degree is directly derived from the
weight of triples. Given a list of triples ordered by their weight, we define the
first n entries to be on level 1 difficulty, the next n entries to be on level 2, and
so on. We have assigned n = 75.

The preprocessing of false answers is based on the generation of a set of wrong
subjects for every triple. When generating a question, a set of false answers is
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chosen from its corresponding set by random. To ensure that the false answer
fits the specific topic of the question, wrong subjects are selected from the same
category as the correct subject. Because every triple (s, p, o) belongs to one or
more categories, the best matching subject category Cs needs to be determined.
This is achieved by selecting the category comprising the most subjects. If there
are categories with the same number of subjects, the most specific category will
be selected. Finally, for every triple (s, p, o) the wrong subjects are selected from
Cs.

3.4 Evaluating Game Rounds

After the player has finished answering a question the subsequent evaluation
comprises three important aspects: recalculating the game state, which includes
scoring, the number of remaining virtual lives, and the level for the next round,
updating game statistics, and the possibility to review the question.

Game State Scoring allows to measure and to compare the players’ achieve-
ments. A player can easily judge how well she performed in WhoKnows? com-
pared to her friends, which motivates people to play over and over again in order
to achieve a better score.

Scorings for a single round can be positive or negative, a player can loose
lives, and move up or down one level of the game. To calculate the achieved
score, given answers are matched against the facts from DBpedia, which are
assumed to be true. Scores are static and not changed afterwards, even though
facts in DBpedia may be subsequently changed.

Incorrect answers will be penalized by loosing one life and a predefined num-
ber of points. In addition, the player moves one level down, to adapt the degree
of difficulty to the user’s abilities. In contrast, correct answers raise the level of
difficulty. Questions have to be solved within limited time frame, the expiration
of the time limit costs 30 points penalty and one life. For correct answers the
player earns 20 points, for false answers 20 points will be deducted. The higher
penalty for not answering the question should motivate the player to decide for
an answer before time is up.

Reviewing the Question The player has the possibility to verify the result of
a game round and, if necessary to submit a complaint. These functions had to be
provided, because it turned out that sometimes data is incorrect or incomplete.
Submitting an answer is followed by presenting the correct solution to the player,
enriched with additional background information to verify the correct answer or
to obtain further information provided by DBpedia or Wikipedia.

In case the player has the opinion that the requested fact seems to be in-
consistent, ambiguous, confusing or even contradicting a reporting option in the
form of a ‘Dislike’-button has been provided. Whenever the player dislikes a
question, all related information is stored to reconstruct the doubtful question.
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This allows to detect and possibly to correct singular and structural inconsis-
tencies. An analysis of those doubtful facts/questions is described in the next
section.

4 Results

WhoKnows? was originally designed to evaluate the ranking heuristics proposed
in [1]. The heuristics are based on the RDF graph structure and use statistical
arguments to rank RDF properties according to their relevance. By the addition
of the ‘Dislike’-button potential inconsistencies in DBpedia can be revealed.

At present, the game has been played 781 times by 165 different users. In
total 4,051 distinct triples have been played. Overall 18,488 rounds have been
performed of which 13,404 have been answered correctly.

4.1 Evaluation of Property Ranking

For evaluating the property ranking heuristics we need to determine the per-
ceived importance of single properties. Our evaluation underlies the assumption
that, the more often a question is answered correctly, the more likely it is that
the fact seems to be of importance. Whenever a distinct property for different
subjects and objects occurs frequently among the correct answers, it can be re-
garded as an important property. WhoKnows? keeps track for every triple how
often it has been played and how often it has been matched correctly.

Table 1. Property Ranking for DBpedia Ontology classes Organisation (left) and
Company (right)

Rank Property Correct Answers

1 locationCountry 97.43%
2 league 94.73%
3 meetingCity 94.64%
4 team 91.45%
5 leader 89.47%
6 keyPerson 88.88%
...

13 parentCompany 82.35%
...

15 location 81.25%
16 country 81.10%
17 product 72.41%

...
21 service 45.45%

Rank Property Correct Answers

1 locationCountry 93.75%
2 keyPerson 88.88%
3 parentCompany 82.35%
4 location 81.25%
5 product 72.41%
6 country 64.70%
7 service 45.45%

Using this data we are able to rank DBpedia properties according to their
ratio, how often a question with this property has been answered correctly. Prop-
erties should be ranked within the categories their entities are assigned to in an
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ontology. Because a property which is very important for an entity of one cate-
gory can be very unimportant for an entity of a another category. Table 1 shows
the ranking of the properties of the two categories Company and Organisation.
Entities assigned to the categoryOrganisation are mostly sports clubs, institutes,
universities etc. Apparently even for these very similar categories the property
ranking differs. E. g., the keyPerson is ranked more important for a Company
than for an Organisation.

According to this heuristic we can recommend a selection and ordering of
likely relevant properties for an entity. As, e. g., for the company Ford12 the
following properties are considered to be important as shown in Table 2. Since
we observed only object properties and filtered the data set according to our
purpose in advance (c. f. Sect. 3.2), there may be some relevant properties missing
(e. g. dbpprop:foundationPerson, dbpprop:industry).

Table 2. Recommended property ordering for dbp:Ford Motor Company.

Property (Rank) Object Value

locationCountry United States
keyPerson William Clay Ford, Jr.

Alan Mulally
product Automobile
service Vehicle leasing

Service (motor vehicle)
Finance

Possible error sources are widespread: our initial selection of triples can be
seen as quite restrictive, since we observed only triples concerning Yovisto enti-
ties. By assigning triples to different levels of difficulty a number of triples have
not been played yet, because the level was not reached13. Up to now only 188
distinct properties (from 508 properties in the data set) have been played at
least once. Some properties have been played very often, e. g. governmentType
has been played 3472 times. Thus, players might have learned the correct answer
already, which influences the rating.

Some properties are prone for trivial questions, because subject and object
often contain parts of words of each other, which oversimplifies the task.

4.2 Detection of Inconsistencies

For the detection of inconsistencies we had to analyze all games that have been
marked by the ‘Dislike’-button. The ‘Dislike’-button was used 470 times (One-
To-One, 274; Hangman, 125; One-To-N, 71). The following issues have been
identified:

12 http://dbpedia.org/resource/Ford_Motor_Company
13 so far the highest reached level is 31
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Fig. 2. Screenshot of an info box in Wikipedia with inconsistent linking.

The question was too simple or too difficult. In some cases users have had
the opinion that the question was too trivial or too simple. This can happen,
if the correct answer and the question itself contain almost identical terms, as
e. g., (Austrians, isEthnicGroupOf, Austria).

Game Bugs. The ‘Dislike’-button has been used 77 times to mark programming
errors, which have been fixed in subsequent releases.

Inconsistencies. The remaining dislikes refer to real inconsistencies in DBpe-
dia. These problems are caused either during automated data extraction from
Wikipedia, or by false statements within Wikipedia articles. Most DBpedia data
has been extracted from the Wikipedia info boxes. Typically, the inconsistencies
occur, if Wikipedia info boxes are not well structured. The info boxes should
contain only key-value pairs, which can be extracted in a reliable way.

Fig. 2 shows an example of an info box with an inappropriate linking (links
are underlined for better reading). The ‘Distributor(s)’ values contain a link
to ‘United States’, which produces an obviously incorrect triple (Interscope
Records, distributingCompany, United States).

With the 4,051 triples played 342 triples have been identified as potentially
inconsistent. After removing the programming errors, within the resulting 265
triples 121 have been verified as true inconsistencies, i. e. with WhoKnows? we
have been able to create a reduced data set with a ratio of around 46% wrong
triples. This is a reasonable number to be reviewed manually in order to correct
the affected triples.
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5 Summary and Outlook on Future Work

Based on these improved semantic metadata, we are able to evaluate our prop-
erty ranking heuristics and thereby improve semantic recommendations. Also,
eLearning platforms, such as our video lecture portal Yovisto, can achieve higher
quality and efficiency.

The original purpose we developed WhoKnows? for, was to evaluate heuris-
tics to rank LOD properties and thus, obtain a semantic relatedness between
entities according to the properties they are linked by. The presented approach
is an efficient method to detect popular properties within a limited amount of
triples. But, since we had to constrain the number of triples to one-fifth of the
original DBpedia triples, the results we achieved can not be transferred to all
DBpedia entities and their properties. Therefore, ongoing work continues in the
development of sound property ranking heuristics for the purpose of detecting
the most relevant characteristics of entities, but also semantically strong (respec-
tively weak) relationships between them.

Nonetheless, WhoKnows? had the very important side effect of detecting
inconsistencies in DBpedia. Automatic recognition of semantic inconsistencies
remains to be a difficult challenge since a valid evaluation is almost impossible
in the light of the large amount of data in the LOD resources. The automatic de-
tection, the prevention, and particularly the rectification of LOD inconsistencies
is an important research issue and every successful contribution will have a sig-
nificant impact on the usefulness and availability of semantically enriched data
in the web. In this way, a more precise semantic search on this data is achieved,
which directly improves all recommendations based on semantic relationships.
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